
X86-NASM

STANDARD COMMANDS

Comment your code with a semicolon (;)! The assembler won’t read anything after it.

Move
mov ax,bx ​; ax = bx

➔ Use this command when you want to move a value around. You can also use
this to move from a ​variable​ to a ​register

➔ You can also use it to move a ​constant ​(ie. number) into a register
➔ Mov works both ways. You can also move the contents of a ​register ​into

memory
◆ Usually, you use a ​variable​ as the base, then add to it. For example,

[output + ecx] ​is the memory location ecx ​bytes ​from output
➔ Some examples:

◆ mov bl, 5​ ;move the value 5 into the register bl
◆ mov rsi, output ​;move the variable output into register rsi
◆ mov eax, ebx ​;move the value in ebx to eax
◆ mov [output + ecx], bh ​# move the value in bh to the memory

location [output + ecx]

Load Effective Address
lea eax, [output+esi+0x10] ​;eax = output + esi + 0x10

➔ An ​effective address​ is just a location in memory. You can think of it as an
address on your street.

◆ output would be the location of your house
◆ esi would be a number, let’s say 0x5. Added to 0x10, that’s 0x15. So the

address from this computation would be 0x15 houses down from yours
➔ Some examples (you won’t use lea in the programs you write, but it will be useful

for our final project)
◆ lea eax, [ebx, esi * 4] ​;load ebx + esi*4 into eax

Add
add eax,ebx ​;eax = eax + ebx

➔ Add two values. You can add the values in two registers, a register and a
constant (ex. 0x5), or dereference an address to access a location in memory

➔ Some examples:

◆ add eax, ebx ;if eax is 2 and ebx is 3, eax will now be 5

◆ add eax, 5 ;if eax is 2 then eax will now be 7

◆ add eax, [​0x400ee4​] ;if eax is 2 and 3 is at the address
0x400ee4, then eax will now be 5

➔ You can subtract by adding a negative number

Shift right
shr eax, 7 ​# eax = eax >> 7

➔ Before: eax = 0110 0001 (binary 97)
➔ Instruction: ​shr eax,3
➔ After: eax = 0000 1100 (now binary 12 (97 / 2^3))
➔ Shifting​ is the act of shifting the bits in a binary* number back and forth. It can

be used to ​multiply​ and ​divide​ numbers
➔ Right shifting is used to ​divide by powers of 2
➔ shr eax, 7​ divides the value in eax by 2^7, or 128
➔ Examples

◆ shr eax, 2 (1000 → 0010, binary 8 → binary 2)

Shift left
shl eax, 7 ​# eax = eax << 7

➔ Before: eax = 0100 0011 (binary 67)
➔ Instruction: ​shl eax,3
➔ After: eax = 0010 0001 1000 (now binary 536 (67 * 2^3))
➔ Left shifting is used to ​multiply by powers of 2

BITWISE OPERATIONS

You probably won’t use these much in the class, but it’s important to know and you can

use it to do some cool math!

And
and eax,ebx ​#​ ​ax = eax & ebx

➔ A bitwise instruction i.e. each bit is handled individually
◆ 1 & 1 = 1
◆ 1 & 0 = 0
◆ 0 & 0 = 0

➔ Eg: 0101 & 1100 = 0100

Or
or eax,ebx

ax = ax | bx

➔ A bitwise instruction i.e. each bit is handled individually

◆ 1 | 1 = 1

◆ 1 | 0 = 1

◆ 0 | 0 = 0

➔ Eg: 0101 & 1100 = 1101

Not
not eax

eax = !eax

➔ A bitwise instruction i.e. each bit is handled individually

◆ !1 = 0

◆ !0 = 1

➔ Eg: !0101 = 1010

CONDITIONALS
Compare
cmp eax, ebx

➔ Comparing​ is used to jump around the program. Say you only want to do the
next few lines if the value of eax is 5 or greater. You must use the compare
instruction first to set the necessary ​flags​ that tell the computer what to do next

Unconditional Jump
jmp label ​# jump to label

Conditional jump
j(cc) label ​# jump to label if condition (see condition codes below)
true (cc = condition code. ex jle = jump if less than)

➔ Important!! ​You must use the cmp command ​first​. Then the condition will be
applied to whatever you compared

Condition code - Meaning
E - Equal

Z - Zero

NE - Not equal

NZ - Not zero

B/ NAE- Below/ Not above or equal

NB/ AE - Not below / Above or equal

BE/ NA - Below or equal / Not above

NBE/ A - Not below or equal / Above

L/ NGE - Less than / Not greater than or equal

NL/ GE - Not less than / Greater than or equal

LE/ NG - Less than or equal / Not greater than

NLE/ G - Not less than or equal/ Greater than

Goto C → X86 NASM

Declaration (initialized)
● string word = “hangman”;

● int a = 5;

● char c = ‘a’;

Initialized variable declarations go in the ​.data section​. Initialized means that they are
immediately set equal to a value, like “hangman” or the number 5. Since you already know the
value of all the variables you want to initialize, you can put their values in ​memory ​before the
program even starts.

section​ .data
word:​ ​db​ ​'hangman'
a: db​ ​0x05
c: db​ ​'a'

db​ stands for ‘declare byte’. You’re simply telling the assembler that you want to declare some
bytes with the following data inside of them. The ​labels ​(word, a, and c) are how you can
access this data anywhere in the program later. If you want a little more space, you can use ​dw
instead. This stands for ‘declare word’. A ​word ​is made up of​ four bytes or 32 bits​.

Declaration (uninitialized)

● char guess;

● int i;

Uninitialized variables go in the ​.bss section​. Uninitialized means that you don’t know what
value you want to put in that variable yet (like if the user wants to input a guess) but you know
you’re gonna need a name and space for it later. You can use the bss section to tell the
assembler that you want to reserve space in memory for some ​future data​. Similar to initialized
data, you use a ​label ​so you can refer back to it later.

section​ .bss
guess:​ ​resb​ ​1
i: ​resb​ ​1

resb​ stands for ‘reserve byte’. The 1 after is simply telling the assembler to reserve 1 byte. You
can use any number here. If you wrote ​resb 4​, you would be reserving 4 bytes.

Conditionals and jumps (converting the goto part)
● if (i == 5) goto endwhile;

● if (x >= 2) goto done;

Writing a conditional in assembly is actually done in 2-3 steps. The first thing you need to do, if
you haven’t already, is put the value you want to compare (i, x) into a register. Let’s say you
already declared i and x way back in your .data section. i and x were the labels you used when
you declared them.

mov​ ​eax​, i ;put the value of i into the register eax

mov​ ​ebx​, x ;put the value of x into the register ebx

cmp​ ​eax​, ​5 ;compare eax and 5

je​ endwhile ;if they were equal jump to (goto) endwhile

cmp​ ​ebx​, ​2 ;compare ebx and 2

jge​ done ;if ebx was >= 2, jump to (goto) done

The jump command is always in the format ​jxx ​where ​xx ​is the ​condition code​. A list of
condition codes is in the x86 cheat sheet. To execute a condition goto statement (a goto
statement with an if before it), you ​MUST ​use the cmp command ​before ​you jump.

If you just have a statement that has goto without a conditional, you can use ​jmp ​to jump no
matter what.

Printing and getting input in X86

● print(output)

● inputchar(guess)

To output and print in nasm assembly, you must use system calls. Here is a chart of useful
system calls and how to use them:

Name eax edi rsi edx

read 0 0 (stdin) label you
want to read
into

length of
input

write 1 1 (stdout) label you
want to print
out

length of
output

exit 60 0 (no error) N/A N/A

Below is a full program to help you understand how to use syscalls:
It’s worth noting that the syscall assumes that output and guess (basically any value in rsi) will hold the
address of where you want to put the data. It won’t change the actual value inside
guess since it’s changing the data at the provided address.

section​ .data
output:​ ​'-------'​, ​0xa​, ​0xd ; declare output with endline (0xa,

0xd)

outputLen:​ ​equ​ $-output ; declare the length of the output

section​ .bss
guess:​ ​resb​ ​1 ; declare the uninitialized variable guess (1 byte)

section​ .text
global​ _start

_start:

mov​ ​eax​, ​1 ; eax = 1 = sys_write

mov​ ​edi​, ​1 ; edi = 1 = stdout

mov​ ​rsi​, output ; rsi = output = label you want to print

mov​ ​edx​, outputLen ; edx = outputLen = length of output

syscall

mov​ ​eax​, ​0 ; eax = 0 = sys_read

mov​ ​edi​, ​0 ; edi = 1 = stdin

mov​ ​rsi​, guess ; rsi = guess = label you want to read into

mov​ ​edx​, ​1 ; edx = 1 = size of input (guess = 1 byte)

syscall

mov​ ​eax​, ​60 ; eax = 60 = sys_exit (exit the program correctly)

mov​ ​edi​, ​0 ; edi = 0 = no error (error code)

syscall

Array Access
● word[i] = ‘b’

● third = word[3]

An ​array​ is a series of characters or numbers that are all related and right next to each other in
memory. To access different pieces of an array, most programming languages use the square
bracket operator (​[]​). The number in the brackets is called the index. Let’s say you have an
array called ‘number’:

number[0] ​would be ​10​, the first element. ​number[2] ​would be ​30​.

So how does this related to our word? In C and assembly language, strings are actually just
arrays of characters, like this:

Index 0 1 2 3 4 5 6

Value h a n g m a n

If you have the statement ​word[i] = ‘b’​, and ​i​ was equal to ​2​, then the array would change
to this:

Index 0 1 2 3 4 5 6

Value h a b g m a n

In assembly, only the address of the first value is stored in memory (in this case, the h). So, if
you declared word like this:

section​ .data
word:​ ​db​ ​'hangman'
wordLen:​ ​equ​ $-​word

word ​would technically hold only the address of the h. That’s why you need the ​wordLen
variable to remember how long the word is.

While there is a square bracket operator in assembly, it is used a bit differently. The square
brackets tell the assembler that the value inside of it is an ​address ​and it needs to ​dereference
it (that is, go to the address) to access the value.

mov​ ​eax​, ​word ; put the address of word into eax

mov​ ​ebx​, ​3 ; put 3 into ebx. this is your index

mov​ [​word​ + ​ebx​], ​0x62 ; the ascii value for 'b' is 0x62. put that

in word + ebx (3). These three lines are equivalent to word[3] = 'b'

Registers in x86

Each register is 64 bits, with a 32 bit part and a 16 bit part. Some registers also have two 8 bit
parts. The idea is that since there are only 6 general purpose registers, you can use the smaller
pieces to store more information, when the data you want to store is smaller.

Here is a chart with the sizes of data you’ll probably be working with in this class. It will help you
decide which size register to use.

Type Examples Size Register Examples

Small number -128 to 127 8 bits (1 byte) ah, al, bh, bl

Medium number -32768 to 32767 16 bits (2 bytes) ax, bx, cx, dx

Large number -2147483648 to 2147483647 32 bits (4 bytes) eax, ebx, ecx

Character ‘a’, ‘b’, ‘c’ 8 bits (1 byte) ah, al, bh, bl

WARNING

The pieces of each register are still technically the ​same register​. That’s why in the diagram the
larger ones overlap with the smaller ones. This means, for example, if you are using register ​ah

and decide to put something in ​rax​, ​eax ​or ​ax​, the value in ah will be overwritten since the
larger pieces use the same space.

That means you can’t use ​ah ​and ​ax​, ​eax ​or ​rax ​at the same time (or
any two+ registers that overlap in the diagram).

Hangman Goto C Answer Key
C Code

int​ ​main​()​{
string​ word = ​"hangman"​;
string​ output = ​"-------"​;
int​ guessed = ​0​;
while​(guessed != len(word)){

char​ guess = ​'a'​;
print(output);

inputchar(guess);

for​(​int​ i = ​0​; i < len(word); i++){
if​(guess == word[i]){

output[i] = guess;

print(output);

guessed++;

}

}

}

print(​"You won!"​);
}

Goto C
 ​string​ word = ​"hangman"​;
 string​ output = ​"-------"​;

 int​ guessed = ​0​;
while​: if​(guessed == len(word)) ​goto​ endwhile;

 char​ guess = ​'a'​;
 print(output);

 inputchar(guess);

 int​ i = ​0​;
for​: if​(i >= len(word)) ​goto​ endfor;

 if​(guess != word[i]) ​goto​ endif;
 output[i] = guess;

 print(output);

 guessed++;

endif: goto​ ​for
endfor: goto​ ​while
endwhile: print(​"You won!"​);

Arrays and Strings in x86

Let’s say you write the following assembly code:
section​ .data

word:​ ​db​ ​'hangman'
wordLen:​ ​equ​ $-​word

section .text

global _start

_start:

mov​ ​eax​, ​word ; put the address of word into eax

Then, you print the value of eax. The value that prints is
0x400ee4

Remember the ‘0x’ means that this value is in ​hexadecimal​.

Fill in the bold cells of the table. If you don’t think we can know what’s in that location, write a ​?​.

Address in memory Content

0x300fe2 (location of word) 0x400ee4

...

0x308e42 (location of wordLen) 7

...

0x400ee3

0x400ee4

0x400ee5

0x400ee6

0x400ee7

0x400ee8

0x400ee9

0x400eea

0x400eeb

You now add the following lines to your assembly code. Write in the blank what the value of eax
will be after each line. It will be very helpful to look back at the filled out table.
Hint: Remember that the square brackets ​([]) ​in assembly mean to go to the address inside of them. Find out the
value inside the square brackets first and then try to figure out what is at that location.

Example:

mov ebx​, ​0
mov eax​, [​word​ + ​ebx​] eax​ = ‘h’

mov ebx​, ​3
mov eax​, [​word​ + ​ebx​] eax​ = ____________________

mov ebx​, ​6
mov eax​, [​word​ + ​ebx​] eax​ = ____________________

mov ebx​, ​4
mov eax​, [​word​ + ​ebx​] eax​ = ____________________

Then, you add these lines:

mov ebx​, ​2
mov [​word​ + ​ebx​], ​'y'

If you print ​word ​to the screen, what will be outputted? ____________________________

